Showing posts with label feedbacks. Show all posts
Showing posts with label feedbacks. Show all posts

The once-thickest Arctic sea ice has gone

The image below shows Arctic sea ice north of Greenland and around Ellesmere Island. This is the area where for thousands of years the sea ice has been the thickest, in many places remaining thicker than 5 meters (16.4 ft) throughout the year.

[ The once-thickest sea ice has gone - click on images to enlarge ]
The image is a compilation of NASA Worldview images over seven days, from August 14 through to August 21, 2018. The least cloudy areas have been selected from each image to get the best insight in the magnitude of this catastrophe.

The loss of this sea ice indicates that the buffer is gone. Sea ice acts as a buffer that absorbs heat, while keeping the temperature at the freezing point of water, about zero degrees Celsius. As long as there is sea ice in the water, this sea ice will keep absorbing heat, so the temperature doesn't rise at the sea surface.

Once the buffer is gone, further energy that enters the Arctic Ocean will go into heating up the water. The amount of energy absorbed by melting ice is as much as it takes to heat an equivalent mass of water from zero to 80°C.

[ The Latent Heat Buffer has gone, feedback #14 on the Feedbacks page ]
At the same time, decline of the snow and ice cover in the Arctic causes more sunlight to get reflected back into space, resulting in more energy getting absorbed in the Arctic Ocean.

[ Albedo Change, feedback #1 on the Feedbacks page ]

Numerous feedbacks are associated with sea ice loss. As the temperature difference between the Arctic and the Equator decreases, changes are taking pace to the Jet Stream that in turn trigger a multitude of further feedbacks, such as more extreme weather and a more scope for heat to enter the Arctic Ocean (see feedbacks page).


A further huge danger is that, as warming of the Arctic Ocean continues, heat will reach methane hydrates at the seafloor of the Arctic Ocean, causing them to get destabilized and release methane.

[ Seafloor methane, feedback #2 on the Feedbacks page ]
Adding up all warming elements associated with disappearance of the sea ice could result in additional global warming many times as much as the current global warming, all in a few years time.

Meanwhile, for the first time in human history, mean global methane levels as high as 1900 ppb have been recorded. The measurements were recorded by the MetOp-1 satellite on the morning of August 22, 2018, at 280 mb, 266 mb, 307 mb and 321 mb, as shown by the images below.


At 293 mb, MetOp-1 recorded an even higher level, i.e. mean global methane level was 1901 ppb on the morning of August 22, 2018.


The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• It could be unbearably hot in many places within a few years time
https://arctic-news.blogspot.com/2016/07/it-could-be-unbearably-hot-in-many-places-within-a-few-years-time.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html

• Latent Heat
https://arctic-news.blogspot.com/p/latent-heat.html

• Albedo and more
https://arctic-news.blogspot.com/p/albedo.html

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• The Threat
https://arctic-news.blogspot.com/p/threat.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html




Can we weather the Danger Zone?

[ click on image to enlarge ]
As an earlier Arctic-news analysis shows, Earth may have long crossed the 1.5°C guardrail set at the Paris Agreement.

Earth may have already been in the Danger Zone since early 2014. This is shown by the image on the right associated with the analysis, which is based on NASA data that are adjusted to reflect a preindustrial baseline, air temperatures and Arctic temperatures.

As the added 3rd-order polynomial trend shows, the world may also be crossing the higher 2°C guardrail later this year, while temperatures threaten to keep rising dramatically beyond that point.

What is the threat?

As described at the Threat, much carbon is stored in large and vulnerable pools that have until now been kept stable by low temperatures. The threat is that rapid temperature rise will hit vulnerable carbon pools hard, making them release huge amounts of greenhouse gases, further contributing to the acceleration of the temperature rise.


Further release of greenhouse gases will obviously further speed up warming. In addition, there are further warming elements that could result in very rapid acceleration of the temperature rise, as discussed at the Extinction page.

The Danger Zone

Below are some images illustrating just how dire the situation is, illustrating how vulnerable carbon pools are getting hit exactly as feared they would be with a further rise in temperature.

On July 5, 2018, it was as hot as 33.5°C or 92.3°F on the coast of the Arctic Ocean in Siberia (at top green circle, at 72.50°N). Further inland, it was as hot as 34.2°C or 93.5°F (at bottom green circle, at 68.6°N).


The satellite image below shows smoke from fires over parts of Siberia hit strongly by heat waves.


The fires caused carbon monoxide levels as high as 20,309 ppb over Siberia on July 3, 2018.


Methane levels that day were as high as 2,809 ppb.


On July 4, 2018, forest fires near the Lena River cause smoke over the Laptev Sea and East Siberian Sea. CO (see inset) and CO₂ levels that day were as high as 45080 ppb and 724 ppm (at the green circle), as illustrated by the image below.


The Copernicus image below shows aerosol forecasts for July 4, 2018, 21:00 UTC, due to biomass burning.


Another Copernicus forecast shows high ozone levels over Siberia and the East Siberian Sea.


EPA 8-hour ozone standard is 70 ppb and here's a report on recent U.S. ozone levels. See Wikipedia for more on the strong local and immediate warming impact of ozone and how it also makes vegetation more vulnerable to fires.

The global 10-day forecast (GFS) below, run on July 3, 2018, with maximum 2 meter temperature, shows that things may get even worse over the coming week or more.


Could we move out of the Danger Zone?

What can be done to improve this dire situation?

One obvious line of action is to make more effort to reduce emissions that are causing warming. There's no doubt that this can be achieved and has numerous benefits, as described in an earlier post. Emission cuts can be achieved by implementing effective policies to facilitate changes in energy use, in diet and in land use and construction practices, etc.

One complication is that the necessary transition away from fossil fuel is unlikely to result in immediate falls in temperatures. This is the case because there will be less sulfur in the atmosphere to reflect sunlight back into space. Furthermore, there could also be an increase in biomass burning, as discussed at the Aerosols page, while the full wrath of recent carbon dioxide emissions is yet to come. As said, the resulting rise in temperature threatens to trigger numerous feedbacks that could accelerate the temperature rise even further. For more on how much temperatures could rise, see the Extinction page.

While it's clear that - besides emission cuts - further action is necessary, such as removing greenhouse gases from the atmosphere and oceans, the prospect is that such removal will have to continue for decades and decades to come before it can bring greenhouse gases down to safer levels. To further combat warming, there are additional lines of action to be looked at, but as long as politicians remain reluctant to even consider pursuing efforts to reduce emissions, we can expect that the world will be in the Danger Zone for a long time to come.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.



Links

• How much warmer is it now?
https://arctic-news.blogspot.com/2018/04/how-much-warmer-is-it-now.html

• 100% clean, renewable energy is cheaper
https://arctic-news.blogspot.com/2018/02/100-clean-renewable-energy-is-cheaper.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• IPCC seeks to downplay global warming
https://arctic-news.blogspot.com/2018/02/ipcc-seeks-to-downplay-global-warming.html

• The Threat
https://arctic-news.blogspot.com/p/threat.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Aerosols
https://arctic-news.blogspot.com/p/aerosols.html

• How extreme will it get?
https://arctic-news.blogspot.com/2012/07/how-extreme-will-it-get.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html


10°C or 18°F warmer by 2021?

Skyrocketing emissions

On April 21, 2017, at 15:00 UTC, it was as hot as 46.6°C/115.8°F in Guinea, in West-Africa (at the location marked by the green spot on the map below).


That same time and day, a little bit to the south, at a spot in Sierra Leona, a level of carbon monoxide (CO) of 15.28 parts per million (ppm) was recorded, while the temperature there was 40.6°C or 105.1°F. Earlier that day (at 13:30 UTC), levels of carbon dioxide (CO₂) of 569 ppm and of sulfur dioxide (SO₂) of 149.97 µg/m³ were recorded at that same spot, shown on the bottom left corner of the image below (red marker).


These high emissions carry the signature of wildfires, illustrating the threat of what can occur as temperatures keep rising. Further emissions that come with wildfires are black carbon and methane.


Above image shows methane levels on April 22, 2017, AM, at an altitude corresponding to 218 mb. Methane at this altitude is as high as 2402 ppb (magenta indicates levels of 1950 ppb and higher) and while the image doesn't specify the location of this peak, it looks related to the magenta-colored area over West Africa and this looks related to the wildfires discussed above. This wasn't even the highest level recorded that day. While at lower altitudes even higher methane levels were recorded that morning (as high as 2505 ppb), above image illustrates the contribution wildfires can make to methane growth at higher altitudes.


The table below shows the altitude equivalents in feet (ft), meter (m) and millibar (mb).
57,016 ft44,690 ft36,850 ft30,570 ft25,544 ft19,820 ft14,385 ft 8,368 ft1,916 ft
17,378 m13,621 m11,232 m 9,318 m 7,786 m 6,041 m 4,384 m 2,551 m 584 m
 74 mb 147 mb 218 mb 293 mb 367 mb 469 mb 586 mb 742 mb 945 mb


Above image compares mean methane levels on the morning of April 22 between the years 2013 to 2017, confirming that methane levels are rising most strongly at higher altitudes, say between 6 to 17 km (which is where the Troposphere ends at the Equator), as compared to altitudes closer to sea level. This was discussed in earlier posts such as this one.

On April 26, 2017, CO₂ levels at Mauna Loa, Hawaii spiked at 412.63 ppm.



As the image below shows, some hourly CO₂ averages for that day were well above 413 ppm.


These high CO₂ levels were likely caused by wildfires, particularly in Siberia.

CO₂ readings on April 26, 2017, 22:30 UTC
As said, besides emissions of CO₂, wildfires cause a lot of additional emissions, as illustrated by the images below.

As above image shows, methane levels as high as 2683 ppb were recorded on April 27, 2017. While the image doesn't specify where these high levels occurred, there are a lot of magenta-colored areas over Siberia, indicating levels over 1950 ppb. The image below shows carbon monoxide levels as high as 5.12 ppm near Lake Baikal on April 27, 2017.


As the image below shows, temperatures on April 28, 2017, were as high as 26.5°C or 79.6°F near Lake Baikal.


The satellite images below shows some of the wildfires. The images also show ice (in the left panel) over Lake Baikal on April 25, 2017, as well as over much of the Angara River that drains Lake Baikal. On April 28, 2017, much of that ice had melted (right panel).

[ click on images to enlarge ]
Warming oceans

Oceans are hit by high temperatures as well. The image below shows sea surface temperature anomalies (from 1981-2011) on April 21, 2017, at selected locations.



Accelerating temperature rises

The image below illustrates the danger of accelerating temperature rises.


Above image uses trendlines based on data dating back to 1880, which becomes less appropriate as feedbacks start to kick in that accelerate such temperature rises. Indeed, temperatures could rise even faster, due to feedbacks including the following ones:

Less sunlight getting reflected back into space

As illustrated by the image below, more ocean heat results in less sea ice. This makes that less sunlight gets reflected back into space and instead gets absorbed by the oceans.

[ Graph by Wipneus ]

More ocean heat escaping from the Arctic Ocean into the atmosphere

As discussed before, as less heat is mixed down to deeper layers of oceans, more heat accumulates at or just below the surface. Stronger storms, in combination with the presence of a cold freshwater lid on top of the North Atlantic, increase the possibility that more of this ocean heat gets pushed into the Arctic Ocean, resulting in sea ice loss, which in turn makes that more heat can escape from the Arctic Ocean to the atmosphere, while more clouds over the Arctic Ocean make that less heat can get radiated out into space. As the temperature difference between the Arctic Ocean and the Equator decreases, changes are occurring to the Northern Polar Jet Stream that further speed up warming of the Arctic.

More heat remaining in atmosphere due to less ocean mixing

As also discussed before, warmer water tends to form a layer at the surface that does not mix well with the water below. This stratification reduces the capability of oceans to take up heat and CO₂ from the atmosphere. Less take-up by oceans of CO₂ will result in higher CO₂ levels in the atmosphere, further speeding up global warming. Additionally, 93.4% of global warming currently goes into oceans. The more heat will remain in the atmosphere, the faster the temperature of the atmosphere will rise. As temperatures rise, more wildfires will erupt, adding further emissions, while heat-induced melting of permafrost will also cause more greenhouse gases to enter the atmosphere.

More seafloor methane entering the atmosphere

The prospect of more heat getting pushed from the Atlantic Ocean into the Arctic Ocean also comes with the danger of destabilization of methane hydrates at the seafloor of the Arctic Ocean. Importantly, large parts of the Arctic Ocean are very shallow, making it easy for arrival of more ocean heat to warm up these seas and for heat to destabilize sediments at the seafloor that can contain huge amounts of methane, resulting in eruptions of methane from the seafloor, with much the methane entering the atmosphere without getting decomposed by microbes in the water, since many seas are only shallow, as discussed in earlier posts such as this one.

These feedbacks are depicted in the yellow boxes on above diagram on the right.

How fast could temperatures rise?

When taking into account the many elements that are contributing to warming, a potential warming of 10°C (18°F) could take place, leading to rapid mass extinction of many species, including humans.
[ Graph from: Which Trend is Best? ]
So, how fast could such warming take place? As above image illustrates, it could happen as fast as within the next four years time.

The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• Accelerating growth in CO₂ levels in the atmosphere
https://arctic-news.blogspot.com/2017/02/accelerating-growth-in-co2-levels-in-the-atmosphere.html

• Arctic Sea Ice Getting Terribly Thin


Warning of mass extinction of species, including humans, within one decade


[ click on images to enlarge ]
On February 10, 2017, 18:00 UTC it is forecast to be 0.1°C or 32.1°F at the North Pole, i.e. above the temperature at which water freezes. The temperature at the North Pole is forecast to be 30°C or 54°F warmer than 1979-2000, on Feb 10, 2017, 18:00 UTC, as shown on the Climate Reanalyzer image on the right.

This high temperature is expected as a result of strong winds blowing warm air from the North Atlantic into the Arctic.

The forecast below, run on February 4, 2017, shows that winds as fast as 157 km/h or 98 mph were expected to hit the North Atlantic on February 6, 2017, 06:00 UTC, producing waves as high as 16.34 m or 53.6 ft.


A later forecast shows waves as high as 17.18 m or 54.6 ft, as illustrated by the image below.


While the actual wave height and wind speed may not turn out to be as extreme as such forecasts, the images do illustrate the horrific amounts of energy contained in these storms.

Stronger storms go hand in hand with warmer oceans. The image below shows that on February 4, 2017, at a spot off the coast of Japan marked by green circle, the ocean was 19.1°C or 34.4°F warmer than 1981-2011.


As discussed in an earlier post, the decreasing difference in temperature between the Equator and the North Pole causes changes to the jet stream, in turn causing warmer air and warmer water to get pushed from the North Atlantic into the Arctic.

The image below shows that on February 9, 2017, the water at a spot near Svalbard (marked by the green circle) was 13°C or 55.3°F, i.e. 12.1°C or 21.7°F warmer than 1981-2011.

[ click on images to enlarge ]
Warmer water flowing into the Arctic Ocean in turn increases the strength of feedbacks that are accelerating warming in the Arctic. One of these feedbacks is methane that is getting released from the seafloor of the Arctic Ocean. Update: The image below shows that methane levels on February 13, 2017, pm, were as high as 2727 ppb, 1½ times the global mean at the time.

[ click on image to enlarge, right image added for reference to show location of continents ] 
What caused such a high level? High methane levels (magenta color) over Baffin Bay are an indication of a lot of methane getting released north of Greenland and subsequently getting pushed along the exit current through Nares Strait (see map below). This analysis is supported by the images below, showing high methane levels north of Greenland on the morning of February the 14th (left) and the 15th (right).



The image below shows methane levels as high as 2569 ppb on February 17, 2017. This is an indication of ocean heat further destabilizing permafrost at the seafloor of the Laptev Sea, resulting in high methane concentrations where it is rising in plumes over the Laptev Sea (at 87 mb, left panel) and is spreading over a larger area (at slightly lower concentrations) at higher altitude (74 mb, right panel).


This illustrates how increased inflow of warm water from the North Atlantic into the Arctic Ocean can cause methane to erupt from the seafloor of the Arctic Ocean. Methane releases from the seafloor of the Arctic Ocean have the potential to rapidly and strongly accelerate warming in the Arctic and speed up further feedbacks, raising global temperature with catastrophic consequences in a matter of years. Altogether, these feedbacks and further warming elements could trigger a huge abrupt rise in global temperature making that extinction of many species, including humans, could be less than one decade away.


Without action, we are facing extinction at unprecedented scale. In many respects, we are already in the sixth mass extinction of Earth's history. Up to 96% of all marine species and 70% of terrestrial vertebrate species became extinct when temperatures rose by 8°C (14°F) during the Permian-Triassic extinction, or the Great Dying, 252 million years ago.

During the Palaeocene–Eocene Thermal Maximum (PETM), which occurred 55 million years ago, global temperatures rose as rapidly as by 5°C in ~13 years, according to a study by Wright et al. A recent study by researchers led by Zebee concludes that the present anthropogenic carbon release rate is unprecedented during the past 66 million years. Back in history, the highest carbon release rates of the past 66 million years occurred during the PETM. Yet, the maximum sustained PETM carbon release rate was less than 1.1 Pg C per year, the study by Zebee et al. found. By contrast, a recent annual carbon release rate from anthropogenic sources was ~10 Pg C (2014). The study by Zebee et al. therefore concludes that future ecosystem disruptions are likely to exceed the - by comparison - relatively limited extinctions observed at the PETM.

An earlier study by researchers led by De Vos had already concluded that current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher.

from the post 2016 well above 1.5°C
As above image shows, a number of warming elements adds up to a potential warming of 10°C (18°F) from pre-industrial by the year 2026, i.e. within about nine years from now, as discussed in more detail at the extinction page.


Above image shows how a 10°C (18°F) temperature rise from preindustrial could be completed within a decade.

https://sites.google.com/site/samcarana/climateplan
The situation is dire and calls for comprehensive and effective action, as discussed in the Climate Plan.


Links

• Climate Plan
http://arctic-news.blogspot.com/p/climateplan.html

• Arctic Ocean Feedbacks
http://arctic-news.blogspot.com/2017/01/arctic-ocean-feedbacks.html

• Extinction
http://arctic-news.blogspot.com/p/extinction.html

• How much warming have humans caused?
http://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• Estimating the normal background rate of species extinction, De Vos et al. (2015)
https://www.ncbi.nlm.nih.gov/pubmed/25159086

• Anthropogenic carbon release rate unprecedented during the past 66 million years, by Zebee et al. (2016)
http://www.nature.com/ngeo/journal/v9/n4/full/ngeo2681.html

• Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum, Wright et al. (2013)
http://www.pnas.org/content/110/40/15908.full?sid=58b79a3f-8a05-485b-8051-481809c87076

• RT America Youtube video
https://www.youtube.com/watch?v=OSnrDRU6_2g

• RT America Facebook video
https://www.facebook.com/RTAmerica/videos/10154168391051366



Warning of mass extinction of species, including humans, within one decade. The forecast for February 10, 2017, 18:00 UTC is that it will be 32.1°F or 0.1°C on North Pole, i.e. above freezing...
Posted by Sam Carana on Wednesday, February 8, 2017
Designed with by Way2themes | Distributed by Blogspot Themes