Showing posts with label rise. Show all posts
Showing posts with label rise. Show all posts

Carbon dioxide emissions are rising

CO₂ emissions are rising

In models used by the Intergovernmental Panel on Climate Change (IPCC), carbon dioxide (CO₂) emissions were expected to come down in line with pledges made at the Paris Agreement. Yet, the Global Carbon Project projects growth in CO₂ emissions from fossil fuels and industry in 2018 to be +2.7%, within uncertainty margins from +1.8% to +3.7%.


This rise is in line with an image from an earlier post that shows growth of CO₂ in the atmosphere to be accelerating.
[ Growth of CO₂ in ppm, based on annual Mauna Loa data (1959-2017), with 4th-order polynomial trend added ]

Methane emissions rising as well

And it's not just CO₂ emissions that are rising. Methane emissions are rising as well. Sadly, politicians typically ignore this elephant in the room, in particular seafloor methane emissions that threaten to trigger a huge temperature rise within years.

[ ignoring the elephant in the room, i.e. seafloor methane ]
The MetOp image below shows high methane levels over oceans on December 9, 2018, pm, at 469 mb. Levels over the Arctic Ocean in particular are very high, as the large areas solidly colored magenta indicate.


The MetOp image shows many areas where no data were available, as indicated by the color grey. The NPP images don't have as many grey areas. The image below confirms very high methane levels over the Arctic Ocean on December 9, 2018 pm, closer to the surface, i.e. at 840 mb. While there still are many grey areas, the absence of data for many of them is due to altitude, since large parts of Greenland, Antarctica and the Himalayas are rather high.


As discussed in earlier posts, large amounts of methane appear to be rising from the Arctic Ocean. As the methane rises higher in the atmosphere, it moves closer to the Equator. The NPP image below shows levels at 399 mb on December 9, 2018, pm. At this altitude, there are very few grey areas, so it's possible to get a fuller picture of where the highest levels of methane are. Ominously, levels as high as 3060 ppb were reached.


El Niño events will intensify

The image on the right shows that, on December 30, 2018, sea surface temperature anomalies were as high as 9.7°C or 17.4°F in the Pacific Ocean, 11.1°C or 20°F in the Atlantic Ocean and 17.1°C or 30.8°F near Svalbard in the Arctic Ocean.

NOAA expects El Niño to form and continue through the Northern Hemisphere winter 2018-19 (~90% chance). A recent study concludes that global warming will enhance both the amplitude and the frequency of eastern Pacific El Niño events.

Albedo change

Albedo change due to decline of the snow and ice cover is another feedback that the IPCC has yet to come to grips with. The IPCC seems to have hoped that albedo loss in the Arctic was somehow compensated for by albedo gain in the Antarctic.

The IPCC (in AR5, WG1) did find a significant increase in Antarctic annual mean sea ice extent that is very likely in the range of 1.2 to 1.8 % per decade between 1979 and 2012 (0.13 to 0.20 million km² per decade) (very high confidence).

As the image below shows, global sea ice extent steadily came down, but then grew somewhat until end 2014. From end 2014 on, Antarctic sea ice extent fell rapidly, with huge repercussions for global sea ice extent, as also illustrated by the image on the right that highlights the most recent years of the graph below.

At the end of 2016, Antarctic sea ice extent was a lot smaller than it was at the end of 2014. Such a difference in sea ice extent corresponds with a huge difference in radiative forcing (RF).

Antarctic sea ice was 5.599 million km² on December 31, 2018, a record low for the time of year and 4.119 million km² less than on December 31, 2014, when extent was 9.718 million km².

This decline could make a difference of 1.3 W/m² in RF. By comparison, the IPCC estimated the net RF from all emissions by people from 1750 to 2011 at 1.6 W/m².
As the image below shows, global sea ice extent was at a record low for the time of year on Dec. 28, 2018,  and looks set to go lower in 2019.

Antarctic sea ice decline is only part of the picture, there's also Arctic sea ice decline and there's decline of the snow and ice cover on land.

Joint impact

A lot of this has not been accounted for by the IPCC, i.e. the recent increases in CO₂ emissions, increases in methane releases, increases in further emissions such as nitrous oxide and black carbon, albedo changes due to decline in the snow and ice cover and associated changes such as jet stream changes, more permafrost melting and stronger impacts of future El Niño events.

The image on the right shows the joint impact of the warming elements that threaten to eventuate over the next few years and that could result in a 10°C or 18°F global temperature rise in a matter of years.

The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.

Links

• Global Carbon Project
http://www.globalcarbonproject.org

• Looking the climate abyss in the eye!
https://arctic-news.blogspot.com/2018/09/looking-the-climate-abyss-in-the-eye.html

• How much warmer is it now?
https://arctic-news.blogspot.com/2018/04/how-much-warmer-is-it-now.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• Albedo change in the Arctic
http://arctic-news.blogspot.com/2012/07/albedo-change-in-arctic.html

• IPCC AR5 WG1 chapter 4
https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter04_FINAL.pdf

• The Threat
https://arctic-news.blogspot.com/p/threat.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• NOAA El Niño forecast
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/ensodisc.shtml

• El Niño events to become stronger and more intense
https://www.theage.com.au/environment/climate-change/el-nino-events-to-become-stronger-and-more-intense-study-finds-20181212-p50lrv.html
https://www.nature.com/articles/s41586-018-0776-9


As El Niño sets in, will global biodiversity collapse in 2019?

Global biodiversity collapse
[ Will global biodiversity collapse in 2019? ]

recent study created a dataset of plant temperature tolerances with a median upper tolerance limit of 23.7°C.

This temperature is about 10°C higher than the temperature in the year 1750.
Only during times of mass extinctions were temperatures that high, such as during the PETM, 55.5 million years ago, and the Permian–Triassic extinction event, 252 million years ago, also know as the Great Dying when some 95% of species known from fossils went extinct.

[ image from: How much warmer is it now? ]
The study concludes that extinction will already occur far earlier than when upper tolerance levels are reached, as "loss of one species can make more species disappear (a process known as ‘co-extinction’), and possibly bring entire systems to an unexpected, sudden regime shift, or even total collapse."

There was a small group of species with large tolerance limits and remarkable resistance to environmental change, but even they could not survive co-extinctions. In fact, their extinction was abrupt and happened far from their tolerance limits and close to global biodiversity collapse at around 5°C of heating.

[ El Niño sets in ]
In the top image on the right, monthly NASA Land+Ocean temperature data 2017-October 2018 are adjusted, and a polynomial trend is added, showing how a 5°C rise in temperature could occur very rapidly, i.e. by September 2019.

The second image on the right is from an earlier post that contains more background on the adjustment of NASA data and the need for a polynomial trend.

A strong abrupt rise in temperature could be caused by an influx of warm salty water into the Arctic Ocean, as this can trigger large eruptions of methane from its seafloor, as discussed in earlier posts such as this one and as further discussed below.

As El Niño sets in, the odds that such rapid warming will threaten to cause global biodiversity collapse are rising.

Earthquakes triggering methane releases


An additional danger is that large methane releases from the seafloor of the Arctic Ocean will be triggered by earthquakes.

The danger is that isostatic rebound will trigger earthquakes in the Arctic Ocean that this in turn will destabilize methane hydrates, as discussed in more detail at this page.

Seismic shocks can travel over long distances along fault lines and destabilize methane hydrates in other locations.

Above image shows that on November 9, 2018, an earthquake with a magnitude of 6.8 on the Richter scale occurred on the fault line between Greenland and Norway.

This area is not used to be hit by large earthquakes. No larger earthquake has occurred in this area for more than 100 years.

Subsequent earthquakes did occur nearby, on November 12, 13 and 15, respectively measuring M4.3, M4.6 and M5.2 on the Richter scale, which also are very large earthquakes to hit this area.

Ominously, high levels of methane showed up on November 21, 2018, over the Greenland Sea (top image on the right).

Earlier, high levels of methane had been recorded over the Arctic Ocean. Note that this fault line runs across the Arctic Ocean toward the Laptev Sea.

Methane levels as high as 2787 ppb were recorded on November 15, 2018 (second image on the right).

On November 17, 2018, methane levels as high as 2847 ppb were recorded (third image on the right).

On November 20, 2018, methane levels as high as 2827 ppb were recorded (fourth image on the right).

The images show large methane levels over the East Siberian Arctic Shelf, the submarine permafrost north of Eastern Siberia.

In a 2008 paper, Dr. Natalia Shakhova et al. concluded that release of up to 50 Gt of methane from hydrates storage could occur at any time, an amount many times the methane that is now present in the atmosphere.

Additional emissions

Such a temperature rise would trigger many forest fires, releasing huge amounts of additional emissions, including carbon dioxide, methane and black carbon.

The image on the right shows carbon dioxide levels in California as high as 809 ppm on November 10, 2018 (at the green circle).

The next image on the right illustrates the jump in carbon dioxide levels in Mauna Loa, Hawaii, following the the fires in California.

“Levels of heat-trapping greenhouse gases in the atmosphere have reached another new record high,” the World Meteorological Organization (WMO) said in a recent news release. “There is no sign of a reversal in this trend, which is driving long-term climate change, sea level rise, ocean acidification and more extreme weather.”

“The science is clear. Without rapid cuts in CO₂ and other greenhouse gases, climate change will have increasingly destructive and irreversible impacts on life on Earth. The window of opportunity for action is almost closed,” said WMO Secretary-General Petteri Taalas.

“The last time the Earth experienced a comparable concentration of CO₂ was 3-5 million years ago, when the temperature was 2-3°C warmer and sea level was 10-20 meters higher than now,” said Mr Taalas.

“CO₂ remains in the atmosphere for hundreds of years and in the oceans for even longer. There is currently no magic wand to remove all the excess CO₂ from the atmosphere,” said WMO Deputy Secretary-General Elena Manaenkova.

In the associated video, Dr Oksana Tarasova added that “changes in carbon dioxide levels that we are observing now do not happen naturally. Such changes never ever happened in the history of this Planet.”

As the image on the right shows, CH₄, CO₂ and N₂O levels in the atmosphere are, respectively, 257%, 146% and 122% their 1750 levels.

How fast could 5°C warming happen? 

The U.S. Global Change Research Program has just released its Fourth National Climate Assessment. One of its key messages is that temperatures could rise by 5°C or more. The report adds that this could occur by the end of the century, but the report doesn't deny this could also occur much earlier. Indeed, one of its key findings is that some feedbacks and potential state shifts cannot be quantified; and some are probably still unknown.

What the report doesn't mention is that global biodiversity will have collapsed at 5°C of warming. Such a rise kills all plants on land and thus virtually all mammals (including humans), since they either directly or indirectly feed on plants.

A rapid 5°C rise could occur if an influx of warm salty water triggered methane eruptions from the seafloor of the Arctic Ocean. Combined with snow and ice loss, it could rapidly raise temperatures by 1.5°C, which increases water vapor. If cloud feedback is strongly positive, water vapor feedback can lead to 3.5 times as much warming, so these warming elements alone could cause 5°C warming within years. And then, of course, there are further warming elements.


The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan, i.e. multiple lines of action implemented in parallel and locally where possible. Of course, as long as politicians remain reluctant to even consider pursuing efforts to reduce emissions, the world can be expected to remain in the Danger Zone for a long time to come.


Links

• Co-extinctions annihilate planetary life during extreme environmental change, by Giovanni Strona and Corey Bradshaw (2018)
https://www.nature.com/articles/s41598-018-35068-1

• Greenhouse gas levels in atmosphere reach new record, World Meteorological Organization (WMO)
https://public.wmo.int/en/media/press-release/greenhouse-gas-levels-atmosphere-reach-new-record

• WMO video - Press Conference: Greenhouse Gas Bulletin (Geneva, 22 November 2018)
http://webtv.un.org/watch/wmo-press-conference-greenhouse-gas-bulletin-geneva-22-november-2018/5970414543001/

• Fourth National Climate Assessment - U.S. Global Change Research Program
https://nca2018.globalchange.gov/

• Doomsday by 2021?
https://arctic-news.blogspot.com/2018/11/doomsday-by-2021.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Seismic Events
https://arctic-news.blogspot.com/p/seismic-events.html

• Can we weather the Danger Zone?
https://arctic-news.blogspot.com/2018/07/can-we-weather-the-danger-zone.html

• How much warmer is it now?
https://arctic-news.blogspot.com/2018/04/how-much-warmer-is-it-now.html

• What Does Runaway Warming Look Like?
https://arctic-news.blogspot.com/2018/10/what-does-runaway-warming-look-like.html

• Peaks Matter
https://arctic-news.blogspot.com/2018/08/peaks-matter.html

• Warning of mass extinction of species, including humans, within one decade
https://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html


IPCC keeps feeding the addiction


The IPCC just released its report Global Warming of 1.5ºC. Things aren't looking good and instead of providing good advice and guidance, the IPCC bends over backward in efforts to keep feeding the addiction.

The Paris Agreement constitutes a joint commitment by all nations of the world to keep the temperature rise below 1.5ºC. The IPCC should have honored this commitment by explaining that the situation is dire and by pointing at action to be taken to improve the situation.

Instead, the IPCC bends over backward to make it look as if temperatures were lower than they really are, in an effort to make it look as if there were carbon budgets to be divided, and polluters should be allowed to keep polluting until those budgets had run out. This is like saying that drug junkies who cause damage and are deeply in debt, should be handed over more OPM (other people's money, in this case the future of all people and other species).

In reality, there is no carbon budget to be divided, there is just a huge carbon debt to be repaid. The urgency and imperative to act is such that progress in one area cannot make up for delays elsewhere. The best policies should be implemented immediately, and everywhere across the world.

Use of terms such as trade-offs, net-outcomes, off-sets, carbon budgets and negative emissions is misguided and highly misleading. Policies based on giving and trading in permits to pollute are less effective than local feebates, i.e. polices that impose fees on sales of polluting products and then use the revenues to support rebates on the better alternatives sold locally.

Here are twelve instances where the IPCC is misleading:
  1. Changing the baseline set at the Paris Agreement
    While the Paris Agreement is clear that pre-industrial is to be used as baseline, the IPCC has instead chosen to use 1850-1900, a period when the Industrial Revolution had long started. This compromises the entire Paris Agreement and thus the integrity of us all. Temperatures may well have been 0.3ºC higher in 1900 than in 1750, as depicted in above image in the light blue block. Add up the warming elements and it may well be that people have caused more than 2ºC of warming already and that we're facing warming of more than 10ºC by 2026.

  2. Misleading calculations and wording
    The IPCC suggests that warming caused by people is 1.0°C (±0.2°C), likely to reach 1.5°C between 2030 and 2052. To reach these numbers, the IPCC used misleading calculations in efforts to downplay how dangerous the situation is, as discussed further below. As an example of misleading wording, the IPCC says it has high confidence that 1.5°C won't be reached until 2030 if warming continues to increase at the current rate of 0.2°C per decade. Sure, if warming was 1.0°C and if it was indeed warming at 0.2°C per decade and if that warming would continue at 0.2°C per decade, yes, then it would take 25 years for warming to reach 1.5°C. But the reality is that warming is already far more than 1.0°C and that it is accelerating. That makes it misleading to associate high confidence with the suggestion that warming will not reach 1.5°C until 2030. The use of a straight line (linear trend) is misleading in the first place, since warming is accelerating. The use of a straight line is even more misleading when such a straight line is then used to make projections into the future and qualifications such as high confidence are added.

  3. Ignoring the importance of peaks
    Daily and monthly peaks are obviously higher than annual averages, and it's those high peaks that kill, making it disrespectful toward past and future victims of extreme weather events to average that away. NASA records show that, in February 2016, it was on average 1.67ºC warmer than in 1900 (i.e. a 30-year period centered around 1900), while the higher latitudes North had anomalies up to 10.8ºC. On land, the average anomaly in February 2016 was 2.26ºC. And this is before adding 0.3ºC for the rise before 1900, and before further adjustments as discussed below. Conservatively, the magenta block at the top of above image shows a rise of 1.63ºC.

  4. Cherry-picking the baseline period
    For a baseline of a 30-year period around the year 1900, the temperature rise to 2016/2017 was 1.22ºC, NASA records show. When adding another 0.3ºC rise for the rise before 1900, warming was well above 1.5ºC in 2016/2017. However, the IPCC conveniently selects an 1850-1900 baseline, a period when it was relatively warm, i.e. warmer than in 1750 and warmer also than in 1900. It was warmer from 1850 to 1900 due to increasing livestock numbers and forests clearing, while huge amounts of wood were burned, all contributing to large emissions of black carbon, brown carbon, methane, CO, etc., which caused additional warming during this period. So, this period was relatively warm. There was little impact yet of the sulfur aerosols that started coming with burning fossil fuel from 1900. Choosing this baseline period enabled the IPCC to beef up the temperature for the baseline and then draw a linear trend from 1850-1900 that looks flatter.

  5. Changing the data
    The U.K. Met Office's HadCRUT dataset goes back to 1850. The IPCC used this dataset, but actually changed the data, by averaging the data with datasets that showed a similar rise for the years after 1900, but that showed higher warming for 1880-1900. This enabled the IPCC to further beef up the average temperature for the period 1850-1900 and then draw a linear trend from 1850-1900 that looks even flatter.

  6. Cherry-picking the type of data
    To further support its suggestions, the IPCC uses water surface data for ocean temperature, but uses air data for temperatures over land. When selecting datasets with more consistency and using air temperatures globally, the temperature rise is 0.1ºC higher.

  7. Not using new techniques to estimate values for missing data
    The IPCC chooses not to use new techniques to estimate temperatures where data are missing. Less data are available for the Arctic, and this is precisely where temperatures have risen much faster than in the rest of the world. When values for missing data are included, the temperature rise is another 0.1ºC higher.

  8. Leaving out 2016
    The IPCC suggests there was a temperature rise of 0.2ºC per decade in the years up to 2015, as if the high temperatures in 2016 didn't occur. The IPCC then uses that 0.2ºC rise to make projections into the future, conveniently skipping the high temperatures in 2016. Failure to properly address acceleration of future warming is further discussed in the point below.

  9. Failure to properly address dangerous developments
    The IPCC fails to point out that carbon dioxide reaches a maximum in warming the atmosphere some 10 years after emission, which means that the full wrath of global warming due to the very high emissions of carbon dioxide over the past decade is yet to come. While temperatures could rise very rapidly over the coming decade, the IPCC keeps talking about carbon budgets, without properly addressing tipping points such as the decline of the snow and ice cover that will result in huge albedo losses, jet stream changes, more and more extreme weather events, and more. The IPCC fails to point out the danger of destabilization of sediments containing methane in the form of hydrates and free gas. Furthermore, the IPCC fails to properly address the aerosol warming that will occur as sulfur emissions decrease and other aerosols increase such as black carbon, brown carbon, etc. The IPCC fails to mention the water vapor feedback, i.e. the increase of water vapor in the atmosphere that will occur as a result of these developments. Since water vapor itself is a potent greenhouse gas, this will speed up the temperature rise even further. These developments could lead to a potential global temperature rise (from 1750) of more than 10ºC by 2026, as illustrated in the image at the top.

  10. There is no carbon budget left
    Instead of pointing at the dangers, as it should have done, the IPCC makes it look as if there was a remaining carbon budget that should be divided among polluters, as if they should continue polluting the world. It should be obvious that there is no such budget. Instead, there's only a huge and very dangerous carbon debt. There is no room for trade-offs or offsets, and terms such as negative emissions are also inappropriate. All efforts should be made to cut emissions, including ending current subsidies for fossil fuel and livestock, while at the same time great effort should be taken to remove carbon from the atmosphere and oceans. And even then, it's questionable whether any humans will be able to survive the coming decade, which will be critically dangerous for all species on Earth.

  11. Suggesting polluting pathways
    The pathways suggested by the IPCC keep fossil fuel in the picture for many years, while highlighting non-solutions such as BECCS. The IPCC makes it look as if coal-fired power plants could continue to operate, by burning more biomass and capturing carbon. The IPCC makes it look as if transport could continue to use internal combustion engines, by burning more biofuel. Instead, clean & renewable energy has many benefits, including that it's more economic, so air capture powered by such facilities would make more sense than BECCS. Furthermore, electric vehicles should be supported now, rather than in the year 2050. It makes sense to stop fossil fuel subsidies, and to support better diets, to plant more vegetation and to support ways to add carbon and nutrients to soils and oceans, such as with biochar and ground rocks. Many technologies have been proposed, e.g. refrigerators and freezers are now made that do not use gases for cooling. The IPCC should not have used pathways that are wrong in the first place. Instead, the IPCC should have pointed at the policies that can best facilitate the necessary transitions, because the scientific evidence is overwhelming and it's the right thing to do.

  12. Not pointing at the best and much-needed policy tools
    The IPCC report fails to point out that imposing fees on polluting products is the most effective policy instrument, the more so when the revenues are used to support rebates on better alternatives supplied locally.
The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.

Prof. Peter Wadhams and Stuart Scott discuss the IPCC Global Warming of 1.5ºC report

Extended version of above video

Paul Beckwith on baseline, methane and more

Stuart Scott talks with Prof. Peter Wadhams on Arctic sea ice

Magnificent work by Stefanie Steven

[ budget ]
Proper analysis would have pointed at what the best action is to improve the situation.

However, the IPCC does not do that. Instead, the IPCC keeps stating that there was a carbon budget to be divided and consumed, while advocating non-solutions such as BECCS and while hiding the full extent of how threatening the situation is.

A quick word count of the IPCC report Global Warming of 1.5ºC (SPM) shows paragraphs full of words such as budget (1st image right) and of non-solutions such as BECCS (2nd image right).

[ BECCS ]
At the same time, it fails to mention biochar, meat or local feebates. It fails to mention the huge threat of feedbacks and tipping points such as methane hydrates and Arctic sea ice, instead making it look as if all that could only pose potential problems over longer timescales.

This is indicative of how much the IPCC is part of the problem and part and parcel of the wilful destruction of life itself that is taking place so obviously all around us.

The IPCC (Intergovernmental Panel on Climate Change) might as well change its name to IPCD (Intergovernmental Panel on Climate Destruction).



It's not as if people weren't warned.
The danger was described back in 2007: Total Extinction.
The mechanism was depicted back in 2011: Runaway Global Warming.
And still, in 2018, the IPCC sadly keeps on feeding the addiction.




Links

• IPCC special report Global Warming of 1.5ºC
https://report.ipcc.ch/sr15/

• Paris Agreement
https://arctic-news.blogspot.com/2015/12/paris-agreement.html
http://unfccc.int/documentation/documents/advanced_search/items/6911.php?priref=600008831
https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Can we weather the Danger Zone?
https://arctic-news.blogspot.com/2018/07/can-we-weather-the-danger-zone.html

• How much warmer is it now?
https://arctic-news.blogspot.com/2018/04/how-much-warmer-is-it-now.html

• 100% clean, renewable energy is cheaper
https://arctic-news.blogspot.com/2018/02/100-clean-renewable-energy-is-cheaper.html

• Fridges and freezers that don't use gases
https://www.facebook.com/groups/geoengineering/permalink/1794122703977728

• Negative-CO2-emissions ocean thermal energy conversion
https://www.sciencedirect.com/science/article/pii/S136403211830532X

• 'Electrogeochemistry' captures carbon, produces fuel, offsets ocean acidification
https://arctic-news.blogspot.com/2018/06/electrogeochemistry-captures-carbon-produces-fuel-offsets-ocean-acidification.html

• Olivine weathering to capture CO2 and counter climate change
https://arctic-news.blogspot.com/2016/07/olivine-weathering-to-capture-co2-and-counter-climate-change.html

• Biochar group at facebook
https://www.facebook.com/groups/biochar

• Aerosols
https://arctic-news.blogspot.com/p/aerosols.html

• IPCC seeks to downplay global warming
https://arctic-news.blogspot.com/2018/02/ipcc-seeks-to-downplay-global-warming.html

• Blue Ocean Event
https://arctic-news.blogspot.com/2018/09/blue-ocean-event.html

• What Does Runaway Warming Look Like?
https://arctic-news.blogspot.com/2018/10/what-does-runaway-warming-look-like.html

• Ten Dangers of Global Warming
https://arctic-news.blogspot.com/p/ten-dangers-of-global-warming.html

• AGU poster, AGU Fall Meeting 2011
https://arctic-news.blogspot.com/p/agu-poster.html


What Does Runaway Warming Look Like?

The forcing caused by the rapid rise in the levels of greenhouse gases is far out of line with current temperatures. A 10°C higher temperature is more in line with these levels, as illustrated by the image below.


Carbon dioxide levels have been above 400 ppm for years. Methane levels above 1900 ppb were recorded in September 2018. Such high levels are more in line with a 10°C higher temperature, as illustrated by the above graph based on 420,000 years of ice core data from Vostok, Antarctica, research station.

How fast could such a 10°C temperature rise eventuate? The image below gives an idea.


Such runaway warming would first of all and most prominently become manifest in the Arctic. In many ways, such a rise is already underway, as the remainder of this post will show.

High Arctic Temperatures

Why are Arctic temperatures currently so high for the time of year?


As warmer water enters the Arctic Ocean from the Atlantic and Pacific Oceans, there is no thick sea ice left to consume this heat. Some of this heat will escape from the Arctic Ocean to the atmosphere, as illustrated by above dmi.dk  image showing very high temperatures for the time of the year over the Arctic (higher than 80°C latitude).


Above dmi.dk image shows that Arctic temperatures are increasingly getting higher during Winter in the Northern Hemisphere.


Similarly, above NASA image shows that Arctic temperatures are increasingly getting higher during Winter in the Northern Hemisphere.


As the Arctic warms up faster than the rest of the world, the Jet Stream is becoming more wavy, allowing more hot air to move into the Arctic, while at the same time allowing more cold air to move south.

Above image shows that the air over the Beaufort Sea was as warm as 12.8°C or 55°F (circle, at 850 mb) on October 2, 2018. The image also illustrates that a warmer world comes with increasingly stronger cyclonic winds.


The images above and below shows that on October 2 and 7, 2018, the sea surface in the Bering Strait was as much as 6°C or 10.7°F, respectively 6.4°C or 11.6°F warmer than 1981-2011 (at the green circle).


As temperatures on the continent are coming down in line with the change in seasons, the air temperature difference is increasing between - on the one hand - the air over continents on the Northern Hemisphere and - on the one hand - air over oceans on the Northern Hemisphere. This growing difference is speeding up winds accordingly, which in turn can also speed up the influx of water into the Arctic Ocean.

[ The Buffer has gone, feedback #14 on the Feedbacks page ]
Start of freezing period

Here's the danger. In October, Arctic sea ice is widening its extent, in line with the change of seasons. This means that less heat can escape from the Arctic Ocean to the atmosphere. Sealed off from the atmosphere by sea ice, greater mixing of heat in the water will occur down to the seafloor of the Arctic Ocean, while there is little or no ice buffer left to consume an influx of heat from the Atlantic and Pacific Oceans, increasing the danger that warm water will reach the seafloor of the Arctic Ocean and destabilize methane hydrates. 

Rising salt content of Arctic Ocean

It's not just the influx of heat that is the problem. There's also the salt. Ice will stay frozen and will not melt in freshwater until the temperature reaches 0°C (or 32°F). Ice in saltwater on the other hand will already have melted away at -2°C (or 28.4°F).

The animation of the right shows salty water rapidly flowing through the Bering Strait.

With the change of seasons, there is less rain over the Arctic Ocean. The sea ice also seals the water of the Arctic Ocean off from precipitation, so no more fresh water will be added to the Arctic Ocean due to rain falling or snow melting on the water.

In October, temperatures on land around the Arctic Ocean will have fallen below freezing point, so less fresh water will flow from glaciers and rivers into the Arctic Ocean. At that time of year, melting of sea ice has also stopped, so fresh water from melting sea ice is no longer added to the Arctic Ocean either.

Pingos and conduits. Hovland et al. (2006)
So, the Arctic Ocean is receiving less freshwater, while the influx of water from the Atlantic and Pacific Oceans is very salty. This higher salt content of the water makes it easier for ice to melt at the seafloor of the Arctic Ocean. Saltier warm water is causing ice in cracks and passages in sediments at the seafloor of the Arctic Ocean to melt, allowing methane contained in the sediment to escape.

[ click on images to enlarge ]
The image on the right, from a study by Hovland et al., shows that hydrates can exist at the end of conduits in the sediment, formed when methane did escape from such hydrates in the past. Heat can travel down such conduits relatively fast, warming up the hydrates and destabilizing them in the process, which can result in huge abrupt releases of methane.

Heat can penetrate cracks and conduits in the seafloor, destabilizing methane held in hydrates and in the form of free gas in the sediments.

Methane

peak methane levels as high as 2859 ppb
On October 2 and 7, 2018, peak methane levels were as high as 2838 ppb, respectively 2859 ppb, as the images on the right shows. Methane levels over the Beaufort Sea have been high for some time, and have remained high at very high altitudes.

The threat is that a number of tipping points are going to be crossed, including the buffer of latent heat, loss of albedo as Arctic sea ice disappears, methane releases from the seafloor and rapid melting of permafrost on land and associated decomposition of soils, resulting in additional greenhouse gases (CO₂, CH₄, N₂O and water vapor) entering the Arctic atmosphere, in a vicious self-reinforcing cycle of runaway warming.

A 10°C rise in temperature by 2026?


Above image shows how a 10°C or 18°F temperature rise from preindustrial could eventuate by 2026 (from earlier post).

The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.


Links

• Temperature Rise
https://arctic-news.blogspot.com/2017/08/temperature-rise.html

• Mean Methane Levels reach 1800 ppb
https://arctic-news.blogspot.com/2013/06/mean-methane-levels-reach-1800-ppb.html

• Why are methane levels over the Arctic Ocean high from October to March?
https://arctic-news.blogspot.com/2015/01/why-are-methane-levels-over-the-arctic-ocean-high-from-october-to-march.html

• Blue Ocean Event
https://arctic-news.blogspot.com/2018/09/blue-ocean-event.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html

• The Threat
https://arctic-news.blogspot.com/p/threat.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Aerosols
https://arctic-news.blogspot.com/p/aerosols.html

• How extreme will it get?
https://arctic-news.blogspot.com/2012/07/how-extreme-will-it-get.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html



Looking the climate abyss in the eye!


Growth of CO₂ in the atmosphere is accelerating. The image shows the growth rate in parts per million (ppm), based on annual Mauna Loa data (1959-2017), with a 4th-order polynomial trend added.

While no data are yet available for the year 2018, the trend on above image points at 2.65 ppm. The image below shows the level for the most recent week, which is 2.53 ppm above the corresponding week a year ago.


Carl Rasmussen calculates that the de-seasonalised growth rate has now (at the middle of 2018) reached ±2.3 ppm/y. Carl adds: "the rate of growth is itself growing, [it is] the highest growth rate ever seen in modern timesThis is not just a 'business as usual' scenario, it is worse than that, we're actually moving backward, becoming more and more unsustainable with every year. This shows unequivocally that the efforts undertaken so-far to limit green house gases such as carbon dioxide are woefully inadequate."


Even more alarming is the growth in methane.

Peak methane levels were as high as 3.37 ppm on August 31, 2018, an ominous warning of the threat of destabilization of methane hydrates at the seafloor of the Arctic Ocean.

Mean global methane levels were as high as 1.91 ppm on the morning of September 20, 2018, at 293 millibar.

This is a level unprecedented in human history and it far exceeds the WMO-data-based trend (added on the right of above image).

Temperatures look set for a steep rise within years, as we now are fully in the danger zone.

Meanwhile, the IPCC seeks to downplay the amount of global warming that has already occurred and that looks set to eventuate over the next decade or so.

The image on the right shows the full extent of the climate abyss that we’re facing.

Have a look at the Extinction page for more details on the full extent of the threat.

How many people and species will survive the coming temperature rise? We don’t know.

The best we can do is to support climate action, i.e. action that starts immediately, and that is transformative, comprehensive and effective, as described in the Climate Plan.

Have a look at the lines of action depicted in the image below.



Links

• Blue Ocean Event
https://arctic-news.blogspot.com/2018/09/blue-ocean-event.html

• Can we weather the Danger Zone?
https://arctic-news.blogspot.com/2018/07/can-we-weather-the-danger-zone.html

• How much warmer is it now?
https://arctic-news.blogspot.com/2018/04/how-much-warmer-is-it-now.html

• 100% clean, renewable energy is cheaper
https://arctic-news.blogspot.com/2018/02/100-clean-renewable-energy-is-cheaper.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• IPCC seeks to downplay global warming
https://arctic-news.blogspot.com/2018/02/ipcc-seeks-to-downplay-global-warming.html

• The Threat
https://arctic-news.blogspot.com/p/threat.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Aerosols
https://arctic-news.blogspot.com/p/aerosols.html

• How extreme will it get?
https://arctic-news.blogspot.com/2012/07/how-extreme-will-it-get.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html


Designed with by Way2themes | Distributed by Blogspot Themes